A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

نویسندگان

  • Qinghua Liu
  • Yu Zhang
  • Haiping Mao
  • Wei Chen
  • Ning Luo
  • Qin Zhou
  • Wenfang Chen
  • Xueqing Yu
چکیده

Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Astragaloside IV Against the TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Peritoneal Mesothelial Cells by Promoting Smad 7 Expression.

BACKGROUND/AIMS To investigate the effect of Astragaloside IV (AS-IV) on the regulation of the TGF-β1/Smad signaling pathway in peritoneal mesothelial cells with an epithelial-to-mesenchymal transition (EMT). METHODS EMT of human peritoneal mesothelial cells (HMrSV5) was induced using 2 ng/ml TGF-β1. Cells were randomly divided into a vehicle group, a vehicle group with AS-IV, a TGF-β1 treate...

متن کامل

ShcA Protects against Epithelial–Mesenchymal Transition through Compartmentalized Inhibition of TGF-β-Induced Smad Activation

Epithelial-mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitme...

متن کامل

Comparative Study of Expression of Smad3 in Oral Lichen Planus and Normal Oral Mucosa

Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa which is considered by the World Health Organization (WHO) as a premalignant condition. One step in malignant development is so called epithelial mesenchymal transition (EMT), a process whereby epithelial cells acquire mesenchymal characteristics. A factor known to induce EMT is the transforming growth factor-β (TGF-β...

متن کامل

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition.

During development and in pathological contexts such as fibrosis and cancer progression, epithelial cells can initiate a complex transcriptional reprogramming, accompanied by dramatic morphological changes, in a process named 'epithelial-mesenchymal transition' (EMT). In this transition, epithelial cells lose their epithelial characteristics to acquire mesenchymal properties and increased motil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012